Remarks on odd colorings of graphs
نویسندگان
چکیده
A proper vertex coloring ? of graph G is said to be odd if for each non-isolated x?V(G) there exists a color c such that ??1(c)?N(x) odd-sized. The minimum number colors in any G, denoted ?o(G), the chromatic number. Odd colorings were recently introduced Petruševski and Škrekovski (0000). Here we discuss various basic properties this new parameter, characterize acyclic graphs hypercubes terms number, establish several upper bounds regard degenericity or maximum degree, pose questions problems.
منابع مشابه
Remarks on Distance-Balanced Graphs
Distance-balanced graphs are introduced as graphs in which every edge uv has the following property: the number of vertices closer to u than to v is equal to the number of vertices closer to v than to u. Basic properties of these graphs are obtained. In this paper, we study the conditions under which some graph operations produce a distance-balanced graph.
متن کاملVertex colorings of graphs without short odd cycles
Motivated by the work of Nešetřil and Rödl on “Partitions of vertices”, we are interested in obtaining some quantitative extensions of their result. In particular, given a natural number r and a graph G of order m with odd girth g, we show the existence of a graph H with odd girth at least g and order that is polynomial in m such that every r-coloring of the vertices of H yields a monochromatic...
متن کاملPerfect $2$-colorings of the Platonic graphs
In this paper, we enumerate the parameter matrices of all perfect $2$-colorings of the Platonic graphs consisting of the tetrahedral graph, the cubical graph, the octahedral graph, the dodecahedral graph, and the icosahedral graph.
متن کاملCobounding Odd Cycle Colorings
We give a very short self-contained combinatorial proof of the Babson-Kozlov conjecture, by presenting a cochain whose coboundary is the desired power of the characteristic class.
متن کاملFurther results on odd mean labeling of some subdivision graphs
Let G(V,E) be a graph with p vertices and q edges. A graph G is said to have an odd mean labeling if there exists a function f : V (G) → {0, 1, 2,...,2q - 1} satisfying f is 1 - 1 and the induced map f* : E(G) → {1, 3, 5,...,2q - 1} defined by f*(uv) = (f(u) + f(v))/2 if f(u) + f(v) is evenf*(uv) = (f(u) + f(v) + 1)/2 if f(u) + f(v) is odd is a bijection. A graph that admits an odd mean labelin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2022
ISSN: ['1872-6771', '0166-218X']
DOI: https://doi.org/10.1016/j.dam.2022.07.024